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ABSTRACT: During storage, grain can experience significant degradation in quality due to a variety of physical, chemical, and
biological interactions. Most commonly, these losses are associated with insects or fungi. Continuous monitoring and an ability to
differentiate between sources of spoilage are critical for rapid and effective intervention to minimize deterioration or losses.
Therefore, there is a keen interest in developing a straightforward, cost-effective, and efficient method for monitoring of stored
grain. Sensor arrays are currently used for classifying liquors, perfumes, and the quality of food products by mimicking the
mammalian olfactory system. The use of this technology for monitoring of stored grain and identification of the source of
spoilage is a new application, which has the potential for broad impact. The main focus of the work described herein is on the
fabrication and optimization of a carbon black (CB) polymer sensor array to monitor stored grain model volatiles associated with
insect secretions (benzene derivatives) and fungi (aliphatic hydrocarbon derivatives). Various methods of statistical analysis
(RSD, PCA, LDA, t test) were used to select polymers for the array that were optimum for distinguishing between important
compound classes (quinones, alcohols) and to minimize the sensitivity for other parameters such as humidity. The performance
of the developed sensor array was satisfactory to demonstrate identification and separation of stored grain model volatiles at
ambient conditions.
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■ INTRODUCTION
Most stored products have their own characteristic smell: fruity,
minty, pungent, and other aromas. The volatiles that make up
these odors can be used as indicator volatiles for healthy grain
(e.g., sweet odor due to long chain aliphatic alcohol from wheat
with certain moisture content; esteric fruity smell from some
rice species). Any deviation from this characteristic odor could
give an indication of grain spoilage.
Characteristic smells of stored grains do not change much

under proper storage conditions; however, an increase in
moisture content (MC), relative humidity (RH), temperature
(T), or foreign agents (insects, fungi, mites, etc.) changes
characteristic smells, which can in turn be used as an indicator
volatile. For example, red flour beetles, Tribolium castaneum
(Herbst), usually produce quinones in storage environ-
ments.1−3 The reported levels of defensive secretions are
variable, depending not only on age and gender of adults but
also on strain, food availability, photoperiod, beetle density, and
health.4 Fungal volatiles, mostly alcohols and ketones, are
another example of indicator volatiles which have been studied
by several authors.5−7 These volatiles were identified by gas
chromatography−mass spectrometry (GC−MS).
There are various instrumental methods for monitoring of

insect volatiles.3,4,8−10 These methods include ultraviolet−
visible spectroscopy (UV−vis), polarography, thin-layer chroma-
tography, and gas chromatography. Each method qualitatively
detects the presence of particular volatiles; however, quantitative
detection of those volatiles is cumbersome and involves a number

of steps. In many cases no quantitative information is available
for these studies. In addition, many of these techniques are also
time-consuming, expensive, or not sensitive enough for the
early detection of fungal and insect activity. A consistent bio-
marker with adequate reproducibility to detect incipient
spoilage could help prevent major losses as a result of fungal
infection or insect infestation of stored grain due to poor
storage management.
In situ measurement or chemical analysis of any grain bin

volatile sample has many advantages over ex situ techniques
because it avoids excessive sampling and analysis steps. The
development of an electronic nose using sensor arrays
combined with pattern recognition techniques offers interesting
alternatives. Instruments of this type have already proven useful
in a number of practical applications such as to classify various
liquors, perfumes, tobacco brands, and beers.11−13 An
electronic nose has been tested for quality estimation of
shrimp14 and bakery products.15

For odor classification, metal oxide, intrinsically conducting
polymer, and conducting polymer composite sensors are
usually used. Depending upon volatile characteristics, an array
of sensing materials are selected for odor identification and
discrimination. Carbon black conducting polymer sensors have
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been employed to identify a wide variety of organic volatiles.16,17

Freund and Lewis18 prepared conducting polymer composite
sensors, which are sensitive to the identity, and determine
concentrations of various organic vapors in air. An array of such
sensing elements produced a chemically reversible diagnostic
pattern of electrical resistance changes upon exposure to different
odorants. They described that such a sensor array can be used as
a signature of organic vapors for identification using principal
component analysis. The sensor array also could provide
information on the components of gas mixtures.
The primary objective of this research was to develop a

sensor array which could efficiently recognize and differentiate the
presence of stored grain model volatiles (e.g., anisole,
benzoquinone, tetrahydrofuran, ketones, and aliphatic alco-
hols). The developed sensor array can be used for detection of
insect infestation and fungal infection in stored grain.

■ EXPERIMENTAL PROCEDURES
Materials. The carbon black (CB) used in the composites was

Black Pearls 2000 (BP2000), a furnace black material from Cabot Co.
(Billerica, MA, USA). The polymers used in the composites are listed
in Table 1. All polymers were purchased from Polysciences Inc.

(Warrington, PA, USA) or Aldrich Chemical Co. (Madison, WI, USA)
and were used as received. These polymers can be classified as
hydrogen bond acidic (HBA), hydrogen bond basic (HBB), dipolar
and hydrogen bond basic (DBB), moderately dipolar (MD), and
weakly dipolar (WD). Analytes will interact with these polymers based
on their structure and intrinsic properties.19 The model volatiles
(analytes) used in this study were toluene (To), anisole (Ani),
methanol (Me), water (H2O), 2-propanol (Pro), 1-octanol (Oc),
acetone (Ac), 1,4-benzoquinone (BQ), and tetrahydrofuran (THF);
all were reagent grade and were used as received from EM Scientific
(Carson, NV, USA) or Aldrich Chemical Co. (Madison, WI, USA).
Instrumentation and Apparatus. Standard glassware was used

to construct a bubbler apparatus (to provide known partial pressures
of various vapors) and a flow chamber to control the resulting gas
stream. The bubblers were 500 mL Pyrex bottles with two armed
29/34 ground joint (24 cm long with a 5 cm inside diameter) from
Lasalle Scientific Inc. (Guelph, ON, Canada). To provide a pathway
for gas flow, a glass tube terminated by a coarse filter frit was inserted
into a glass stopper and then placed into the top of each bubbler. The
carrier gas was oil free ultrahigh purity (99.99%) compressed nitrogen
from Praxair Inc. (Calgary, AB, Canada). The measurements were
performed at a temperature of 25 °C ± 1 °C, which was maintained
through a microprocessor controlled water bath (model no. 28L,

Cole-Parmer, Montreal, QC, Canada). The carrier gas was introduced
into the solvent through the porous ceramic frit, and the solvent-
saturated gas mixture exited the bubbler via the side arm of the glass
tube. Saturation of the gas streams in the experimental apparatus was
verified for the highest flow rates (1000 sccm) used in this work
through measurement of the rate of mass loss of liquid in the bubbler;
thus saturation conditions were assumed to have been obtained for the
lower flow rates used in other experiments. The vapor pressures of
model volatiles and associated concentration derived from elsewhere20

at 25 °C temperature are shown in Table 2.

Saturated vapor was carried out the side arm of the bubbler, blended
with a controlled background flow of pure carrier gas, and then
transferred into the rectangular sensing chamber made of Teflon
(15.2 cm × 8.5 cm × 4.5 cm). The sensing elements were introduced
into the chamber through open slot(s) and attached to a printed
circuit board (PCB) connected through an edge connector (Figure 1).
The chamber was sealed when connected to the PCB. The gas flow
rates were controlled with mass flow controllers (model: FLO-9HL,
Plasmionique Inc., St Hyacinthe, QC, Canada), three-way valves, and
Teflon solenoid shut-off valves.

Measurements. To determine the response of the sensor elements
to various vapors, the dc resistance of each sensor was determined as a
function of time. Resistance measurements were performed using a
simple two-point configuration. Sensors fabricated with the PCB
supports were plugged directly into a 15- or 30-pin bus strip, which
was then connected to a multiplexing ohmmeter via a ribbon cable.
The resistances of the composite films on gold substrates were
monitored through an Agilent data acquisition unit (model 34980A,
Agilent Technologies, Inc., Santa Clara, CA, USA) using a personal
computer (PC).

To initiate an experiment, the sensors were placed into the Teflon
chamber and a background flow of compressed air was introduced
until the resistance of the sensors stabilized. Solvent vapor streams of
various concentrations and compositions were then passed over the
sensors. The flow rates in the bubblers were controlled using mass
flow controllers with the flow limit of 0.2 to 2000 sccm (standard cubic
centimeter). Analyte gas flows were kept low enough (5 to 50 sccm)
to ensure that the vapor was saturated with solvent prior to dilution
with the background gas. In a typical experiment, resistance data from
the sensor array elements were collected for 10 min (to serve as a
baseline), followed by a 5 min collection during exposure to the
solvent vapor stream, followed by a 5 min recovery time.

A blend of saturated vapor and ultrahigh purity nitrogen was used
for the measurements. To achieve the required levels of volatile
concentrations (ppmv), saturated vapor was diluted to appropriate
concentrations by mixing and varying the gas flow rate from the
nitrogen cylinder. For example, a flow rate (FR) of 1000 sccm of 3157 ppmv
acetone and 990 sccm of nitrogen in the Teflon mixing chamber
measured at the same pressure and temperature required 10 sccm of
saturated acetone (Table 3). In a similar fashion, desired levels of

Table 1. Polymers Used in the Sensor Arrays

IDa symbol polymer

1 P4VP poly(4-vinylphenol)
2 PSAA poly(styrene-co-allyl alcohol)
3 PMS poly(alpha-methylstyrene)b

4 PVP poly(N-vinylpyrrolidone)
5 PVA poly(vinyl acetate)b

6 PMVE poly(methyl vinyl ether-co-malic anhydride)
7 PBAC poly(bisphenol A-carbonate)b

11 PS poly(styrene)b

12 PSMA poly(styrene-co-maleic anhydride)
13 PVB poly(vinyl butyral)b

14 PSu poly(sulfone)b

15 PMMA poly(methyl methacrylate)b

16 PVCA poly(vinylidene chloride-co-acrylonitrile)
17 PEO poly(ethylene oxide)

aID: identification number. bSelected polymers.

Table 2. Vapor Pressure of Model Volatiles and Associated
Concentration at 1% (P/Po = 0.01)

Sla name vapor pressure at 25 °C (mmHg)
concn
(ppmv)

1 1-octanol 0.07 0.921
2 1,4-benzoquinone 0.10 1.316
3 anisole 3.54 46.57
4 water 23.8 313.2
5 toluene 28.4 373.7
6 2-propanol 44.1 578.9
7 methanol 123 1618
8 THF 155 2039
9 acetone 240 3157

aSl: serial number.
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volatile concentrations were achieved by mixing various levels of
nitrogen and saturated vapor from different bubblers in air.
Data Collection System. The data collection system used for

characterization of the sensor array consisted of an Agilent 34980A
Data Acquisition Switch Unit (Agilent Technologies, Inc., Santa Clara,
CA, USA). The dc resistance of the sensor was read sequentially by the
Agilent data acquisition unit. The control computer was interfaced
with the data collection system through an IEEE general purpose
interface board (GPIB). The resistance data were initially stored in the
data acquisition unit, and once a complete set of data were recorded,
the GPIB communications protocol sent the data to the control
computer, where the data were stored in a tab-limited text file.
Sensor Construction. Gold interdigitated array electrodes (IDAs)

to be used as the sensor substrate platform, deposited on a 1 mm thick
printed circuit board (PCB), were custom designed in consultation
with Nano Fabrication Lab, University of Manitoba, and Iders Inc.,
Winnipeg, MB. The sensor chip was fabricated by Dynamic & Proto
Circuits Inc., Stoney Creek, ON. Each sensor chip had seven sensor
elements (detectors) (Figure 2).

Carbon black polymer sensors were prepared on properly cleaned
IDAs according to a previously reported procedure.17 In brief, to
prepare the carbon black−polymer composites, 40 mg of carbon black
and 160 mg of one of the insulating polymers (Table 1) were added to
20 mL of solvent. The solvents were tetrahydrofuran, dichloro-
methane, methanol, or acetone. The solutions were sonicated for
10 min to suspend the carbon black, and the films were cast by spray
coating using an aluminum mask on the electrode area. The spraying
procedure was repeated several times until a measurable film resistance
(few kiloohm) was obtained. Before use, the sensors were dried in
open air for 1 day.

Gas−Sensor Interaction and Data Processing. The interaction
between polymer sensor and gaseous analytes can be described by the
sorption process16 and the solvation equation,21 where sorption is
based on interactions between polymer composite (stationary phase)
and gas (mobile phase) and is governed by a partition coefficient,
which was mathematically described by Severin.16

When the interaction is of a complex nature, it can be explained by
the solvation parameter model in a form suitable for characterizing the
retention properties of sensing phases in gas−solid chromatography as
given by eq 1, generally known as the linear solvation energy
relationship (LSER) equation:21,22

∑ ∑= + + π + α + β +c rR s a b l Llog SP log2
H

2
H

2
H

2

(1)

where SP is some free energy related solute property such as a gas−
solid partition coefficient, retention factor, specific retention volume,

Figure 1. A schematic representation of a sensor chamber made of Teflon: (a) top view; O, O-ring; E, edge connector slot; S, sensor array slot; (b)
inner chamber view; I, gas inlet; L, gas outlet; (c) sensor array connected with edge connector.

Table 3. Typical Example of Gas Flow and Their
Concentration in Mixture

carrier gas
(sccm)

analyte vapor
(sccm)

mixture flow
(sccm)

analyte concn
(%)

1000 0000 1000 0
990.0 10.00 1000 1
980.0 20.00 1000 2

Figure 2. Sensor array (a) bare gold and (b) polymer on gold surface.
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or relative adjusted retention time. The remainder of the equation is
made up of product terms called system constants (r, s, a, b, l) and
solute descriptors (R2, π

H
2, ∑αH2, ∑βH2, log L). Each product term

represents a contribution from a defined intermolecular interaction to
the correlated solute property (log SP). The l log L term represents
the contribution from cavity formation and solute−stationary phase
dispersion interactions; rR2 the contribution from lone pair n- and
π-electron interactions; πH

2 the contribution from interactions of a
dipole type; a∑αH2 the contribution from solute hydrogen-bond acid
stationary phase hydrogen-bond base interactions; and b∑βH2 the
contribution from solute hydrogen-bond base stationary phase
hydrogen-bond acid interactions. We applied Abraham’s solvation
equation (eq 1) during sensor array optimization.
Data preprocessing is an important tool for sensor study. It can be

used to systematically modify the raw sensor signals from an array to
provide more useful input to mathematical methods for data analysis
(e.g., principal component analysis or linear discriminant analysis).
There are no general guidelines to determine the appropriate data
preprocessing technique for a particular type of sensor array, so it is
beneficial to explore several preprocessing strategies to determine
which is best suited for a particular sensor array/data analysis method.
Likewise, there are a number of statistical techniques available for data
analysis including both supervised and unsupervised techniques.
The overall objective of this work is to detect incipient spoilage of

grain from various sources (e.g., insects, fungi) using a suitable sensor
array. Fourteen different polymers with different structures and
functional groups were available for this study. Backbone and
functional groups provide the mechanisms of interaction with a
particular analyte as described by eq 1, and an array of chemically
diverse polymer base sensors will ultimately generate a response
pattern unique to the various odors exposed to the array. To simplify
the fabrication and function of the sensor array, the fourteen polymers
were assessed and downselected to a seven sensor array on an
inexpensive printed circuit board (PCB).
Downselection was achieved through a systematic statistical analysis

of responses generated with the model volatiles of interest. Individual
sensor performance was evaluated in terms of selectivity, reproducibility,
and sensitivity with respect to model volatiles of interest. Scoring and
ranking of sensors based on these figures of merit provides insight and a
statistical basis for selecting sensor materials from each sensor set.
Selectivity was assessed based on weighted contribution of the sensors
to linear discriminant analysis (LDA), reproducibility from relative
standard deviations (RSD) of repetitive exposures, and sensitivity
through linearity and slope of responses as a function of concentration.
These are all supervised methods for data analysis. Other methods such
as principal component analysis (PCA), an unsupervised method, were
also performed to gauge performance with multiple analytes; however,
this method did not provide additional insight into individual sensor
performance. Details of supervised and unsupervised techniques of data
analysis were described by several authors.23−25

■ RESULTS AND DISCUSSION
Selection of Model Volatiles. A few model volatiles

(water, methanol, acetone, 2-propanol, anisole, 1,4-benzoqui-
none, toluene, 1-octanol, tetrahydrofuran) were selected to
optimize sensor performance. The volatiles and their basic
characteristics were discussed elsewhere.20 These volatiles have
some structural similarities with stored-grain volatiles. For
example, benzoquinone derivatives (methyl benzoquinone
(MBQ) and ethyl benzoquinone (EBQ)) are usually produced
from red flour beetle as aggregation or sex pheromones.4,26

Long chain aliphatic alcohol and their derivatives evolve from
wheat under certain physical (temperature, MC, RH) and
biological conditions.7,27 Tetrahydrofuran (THF) and anisole
were selected because their derivatives are produced when grain
is severely damaged and produces a musty odor.7,28,29 All other
low molecular weight alcohols and ketones are produced at
different stages of degradation of stored grain.

Sensor Array Optimization. The optimization of a sensor
array for incipient grain spoilage monitoring requires special
attention to flow rate, linearity of sensor response, and random
exposures of analytes to CB sensors (Figure 3 and Figure 4).

Effect of Flow Rate on Sensor Response. Gas flow rate
in a grain bin is typically very low unless it is purged for drying
or cooling the grain. The gas circulation in a grain bulk

Figure 3. Effect of flow rate on carbon black polymer sensor
poly(vinyl butyral). Analytes used here were (a) 1,4-benzoquinone and
(b) 1-octanol at P/Po = 0.02 to 0.10 and 25 °C temperature. Error bar
for 3 replicates.

Figure 4. Principal component analysis using CB polymer composite
sensors upon random exposure of various analytes: (◆) anisole, (■)
toluene, (▲) tetrahydrofuran, (×) 2-propanol, (*) 1,4-benzoquinone,
(●)-1-octanol.
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proceeds predominantly through diffusion although additional
mass transport through intergranular space can be caused by
temperature gradients in the grain bin. Other factors, such as
external wind flow and pressure, internal moisture, and CO2 by
respiration of grain, insects, mites, and fungi, can also impact
the process. As a result, the evolution of sensor array response
patterns is expected to be slow, thus assumed to be in
equilibrium with its surroundings. To efficiently test the sensor
arrays, a relatively high flow rate (1000 sccm) was chosen in
designing and performing most of the experiments. Care was
taken to allow sufficient time for the array to reach equilibrium
with the exposed volatiles to ensure that the response would be
similar to that obtained for a similar concentration at a low flow
rate. For 1,4-benzoquinone, it was not possible to generate
constant vapor pressure over the entire duration of the experi-
ment with this vapor delivery instrument. Therefore, sensor
response dropped slightly, which is reflected in Figure 3. But it
was possible to generate consistent 1,4-benzoquinone vapor
pressure at low flow rate.
Linearity of Sensor Response. The linearity and slope of

calibration curves are a measure of sensor performance. Large
slopes indicate good or better sensitivity of a sensor compared
to low slopes for a particular analyte. Table 4 shows the
sensitivity of all sensors for the various analytes. Regression
coefficients varied within the limit of 0.9996 to 0.7802. For
some sensor−analyte combinations, correlation coefficients
were low because the sensor exhibited only a very small
response to the analyte. Poly(N-vinylpyrrolidone) and poly-
(4-vinylphenol) showed high level of interaction with 1-octanol
and 1,4-benzoquinone, whereas anisole showed strong
interaction with poly(4-vinylphenol), poly(vinyl butyral),
poly(bisphenol A-carbonate), and poly(sulfone). Tetrahydro-
furan showed the greatest interaction with poly(vinyl butyral).
Random Exposures of Analytes to CB Sensors.

Random exposures of analytes to CB sensors were performed
to check possible interference from new volatiles and
sufficiency of recovery time. Figure 5 shows a typical sensor
response to analytes when exposed randomly at certain partial
pressure. The order of odor volatiles did not influence the
sensor response after a 5 min recovery time. Figure 4 also
confirms the ability of the sensor array to classify volatiles with
random exposure of analytes.

Sensor Selection. The analysis of sensor arrays involves
fabrication, testing and exposing the arrays to a set of target
analytes at the concentration of interest. Most of the experi-
mental concentration range is low, and it was within 1−5% of the
analyte’s vapor pressure by volume. Initially sensors were
evaluated based on polymer types and functional groups, and
how the polymers were predicted to respond to analytes based
on bonding or nature of interaction. For example, in a
stationary phase, hydrogen bonding base groups may show
stronger interaction with alcohol containing volatiles than the
one containing hydrogen bonding acid groups. A nonpolar
stationary phase should show enhanced interaction with a
nonpolar volatile compared to a polar one. The arrays were
selected based on experimental data developed in the laboratory,
using a combination of statistical and experimental techniques.
To determine the seven best polymers for detecting

benzoquinone derivatives (MBQ, EBQ, and 1,4-benzoqui-
none), benzene derivatives (anisole, phenol), and long chain
aliphatic alcohols (1-octanol, 1-butanol, methanol), we
developed a protocol that is discussed in the following sections.
To select the best sensor array from fourteen polymers, and

eight selected model volatiles, individual sensor performance
was evaluated in each sensor set using both supervised and

Table 4. Sensitivitya of CB Polymer Sensors toward Model Volatiles (atm−1)

sensor Me Ac THF BQ Ani Pro To Oc

1 0.3013 1.0000 0.7126 0.7146 1.0000 1.0000 0.5718 0.4105
2 0.0783 0.2277 0.2780 0.3149 0.4354 0.7899 0.5634 0.1017
3 0.0180 0.0564 0.0556 0.0947 0.2706 0.1592 0.3087 0.1226
4 1.0000 0.3150 0.0347 1.0000 0.0518 0.5158 0.3782 1.0000
5 0.0285 0.0537 0.0413 0.1187 0.3121 0.1779 0.1911 0.1906
6 0.0567 0.0643 0.0279 0.4232 0.5597 0.0743 0.2987 0.2946
7 0.0280 0.1589 0.1401 0.1771 0.7258 0.3103 0.8345 0.1752
11 0.0204 0.1000 0.1092 0.1393 0.5555 0.2654 0.6465 0.2105
12 0.0219 0.4448 0.3434 0.1034 0.2017 0.2309 0.2667 0.0757
13 0.1158 0.3864 1.0000 0.1256 0.8624 0.4788 1.0156 0.1916
14 0.0380 0.1908 0.1592 0.2081 0.7498 0.4497 0.8860 0.2320
15 0.0323 0.1569 0.1144 0.0651 0.2519 0.1894 0.1931 0.1547
16 0.0263 0.1853 0.1683 0.0463 0.1567 0.0644 0.2027 0.2619
17 0.0180 0.0382 0.0360 0.0531 0.3888 0.1522 1.0000 0.1868

aFor simplicity all data are represented compared to highest slope for respective volatile; To, toluene; Ani, anisole; Me, methanol; Pro, 2-propanol;
Oc, 1-octanol; Ac, acetone; BQ, 1,4-benzoquinone; and THF, tetrahydrofuran.

Figure 5. Random exposure of analytes to (a) poly(bisphenol
A-carbonate) and (b) polystyrene sensor at fixed partial pressure
(0.02) and 25 °C. The analytes are water vapor, methanol, acetone,
tetrahydrofuran, 2-propanol, toluene, and 1-octanol. Flow rate was
1000 sccm.
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unsupervised techniques. Supervised techniques involved
sensors' reproducibility, sensitivity, and selectivity and un-
supervised principal component analysis. It was then scored i to
xiv for each sensor’s performance using these metrics
individually and overall (i = best, xiv = poor) (Table 5).
Reproducibility. Figure 6 shows a typical example of

reproducibility of carbon black polymer sensor response at
25 °C. Reproducibility of an individual sensor was calculated
from relative standard deviations (RSD) for benzoquinone and
1-octanol at P/Po = 0.02. Large RSD indicates a noisy sensor,
and as a result is not suitable for the sensor array. From the
analysis it was observed that sensor 15, 7, 3, 17, 11, 13, and 14
performed relatively well for 1-octanol, whereas sensor 7, 11,
14, 5, 13, 17, and 3 performed well for 1,4-benzoquinone and
their derivatives (Table 5).
Sensitivity. Sensitivity was also evaluated from the slope of

calibration curves for volatiles of interest for P/Po in the range
of 0.01 to 0.05 as shown in Figure 7. Poly(N-vinylpyrrolidone)
shows the highest sensitivity for both 1-octanol and 1,
4-benzoquinone and second highest for poly(4-vinylphenol).
These two polymers presumably interact with those analytes
through hydrogen bonding, much stronger interaction
compared to other polymers.
The comparison of slope of poly(4-vinylphenol) for 1-

octanol (0.128 atm−1) and 1,4-benzoquinone (0.741 atm−1)
demonstrates that sensitivity was higher for the poly(4-
vinylphenol) sensor toward 1-octanol compared to quinone.
The increased sensitivity presumably comes from pi−pi
interactions and polarizability. As BQ does not have any acidic
hydrogen, the contribution toward hydrogen bonding is
expected to be negligible. In contrast, 1-octanol does have a
hydrogen bonding contribution.
Using eq 1 and solving for regression coefficients using data

from Table 6 and Table 7, values could be determined as shown
in Table 8. The regression coefficients (i.e., r, s, a, b, and l) show
the importance of the contribution of the corresponding
chemical forces to the partition coefficient between a given
vapor/sorbent pair. The regression constant, c, is a residual
product of multiple linear regressions that has no significance in
relation to the chemical forces.
Sensor 13 showed the highest tendency to interact through

pi and n electron pairs among the sensors. Sensors 13 and 15
had a considerable amount of polarity compared to the others.
Hydrogen-bond basicity was low for most of the sensors except
13, indicating that the acidic phase of sensor 13 will interact
with a basic solute or vapor. Indeed the structure of sensor 13
has the greatest capacity for hydrogen-bond basicity. From the
values of b, it was observed that almost all sensors have the
capacity to interact with solute through hydrogen-bond acidity.
To measure the ability of the phase to distinguish between or to
separate homologues in any homologous series, sensor 13
contributed remarkably more than other sensors.
For example, from Table 7, interaction between sensor 13

and methanol (0.6294 atm−1) is much higher compared to that
of 2-propanol (0.1696 atm−1). In this case, 1-octanol showed
least interaction with sensor 13. This is how sensor 13
efficiently contributes to separation of homologous series of
alcohols.
Selectivity. Selectivity is the ability of the array to

distinguish one analyte from another. This ability is one of
the most important criteria in selecting a sensor array. Linear
discriminant analysis (LDA) can be used to measure a sensor’s
ability to distinguish analytes by maximizing the variance T
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between the clusters and minimizing variance within the
clusters. In principle, small constants imply that it contributes
relatively little to distinguishing between analytes, and
large values suggest a large contribution. Figure 8 shows that
the sensors poly(styrene) and poly(vinyl acetate) have the
greatest contribution in distinguishing 1,4-benzoquinone and
1-octanol.
Principal Component Analysis. Another unsupervised

technique was adopted to see whether sensors selected from

the methods mentioned above were still able to differentiate
two analytes of interest. The principal component analysis
(PCA) was performed using seven selected sensors
responses.
During sensor array optimization, large amounts of data are

dealt with in a very short time. A significant challenge exists in
finding ways to extract information useful in solving the
problem at hand from the data. Graphical analysis of the raw
data is often not possible since the number of samples and
sensors is typically greater than three. Therefore, methods for
reducing the data to dimensions that can be accommodated
graphically are often used. Visual examination of sensor array
data in reduced dimensions can provide useful information
about both samples and sensors. PCA (sometimes referred to
as factor analysis) is a mathematical technique used to identify
important factors or variables in multidimensional data matrix.
The vectors consisting of most valuable information of a data
matrix are eigenvectors (evs) and can be used for sensor data
interpretation. Usually, the first few eigenvectors (ev1, ev2)
contain most of the information of the sensor data set. Using
PCA, ev1 and ev2 were obtained for ranking of all sensors. In
terms of ev1, the seven best sensors were 3, 15, 5, 13, 14, 11,
and 7 while according to ev2 the best sensors were 17, 4, 1, 6, 2,
11, and 14. Again PCA was done with the seven best sensors
based on ranking for ev1 (Figure 9a) and ev2 (Figure 9b).
Sensor array according to ev1 showed better classifiability of
model volatiles compared to that of ev2. Sensor array selected
according to ev2 was not able to distinguish between anisole
and toluene. It also failed to distinguish benzoquinone from
1-octanol. Downselecting the seven best sensors in terms of
classifiability of volatiles of interest both supervised and
unsupervised techniques worked well.
In terms of reproducibility of the sensor for both 1-octanol

and 1,4-benzoquinone, the best six sensors (PBAC, PMMA,
PMS, PSu, PS, PVB) were found and poly(ethylene oxide) was
the seventh sensor. Poly(ethylene oxide) was rejected from
the sensor array as it had poor sensitivity and less selectivity
toward Oc and BQ, though it was a moderately reproducible
sensor.
When PCA was done with the seven sensors selected from

reproducibility criteria, it showed poor distinguishability
between Oc and BQ (Figure 10a). When poly(ethylene
oxide) was excluded from the sensor array, the new sensor
array was able to separate Oc and BQ (Figure 10b).
The best sensors (P4VP, PSAA, PVP, PVCA) in terms of

sensitivity could not be kept in the sensor array. They were
poorly selective and least reproducible toward the analytes
of interest. Poly(methyl vinyl ether-co-malic anhydride) was
excluded for its low selectivity and reproducibility, but
moderate sensitivity. Moderately sensitive sensors were
included in the sensor array.
Poly(vinyl acetate), poly(styrene), and poly(vinyl butyral)

were the best sensors in terms of selectivity. These sensors were
moderately reproducible and sensitive toward the analytes of
interest. Poly(bisphenol A-carbonate), poly(sulfone), and poly-
(alpha-methylstyrene) were moderately selective. Poly(styrene-
co-maleic anhydride) was excluded from the sensor array as it
was moderately selective but poorly reproducible and less
sensitive to volatiles of interest.
The seven good sensors which will be sufficient in pattern

recognition of volatiles of interest were selected. These are
poly(vinyl acetate), poly(styrene), poly(bisphenol A-carbonate),
poly(sulfone), poly(alpha-methylstyrene), poly(methyl methacrylate),

Figure 6. Reproducibility of carbon black polymer sensor (PBAC) to
acetone at 0.02 partial pressure. N = 6, 1000 sccm flow rate and 25 °C.

Figure 7. Sensitivity of various carbon black polymer sensors toward
(a) 1-octanol and (b) 1,4-benzoquinone at low concentration range
(P/Po = 0.01 to 0.05).

Table 6. Values of Solute Descriptors19

volatiles R2 πH2 ∑αH2 ∑βH2 log L

methanol 0.278 0.44 0.43 0.47 0.970
2-propanol 0.212 0.36 0.33 0.56 1.764
1-octanol 0.199 0.42 0.37 0.48 4.619
acetone 0.179 0.70 0.04 0.49 1.696
THF 0.289 0.52 0.00 0.48 2.636
toluene 0.601 0.52 0.00 0.14 3.325
anisole 0.708 0.75 0.00 0.29 3.890
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and poly(vinyl butyral). In this sensor array most RH sensitive
sensors (PVP, P4VP) are absent, which resulted in the array
having low RH sensitivity.
Linear Discrimination Analysis. Using PCA, the clusters

from our target volatiles 1-octanol and 1,4-benzoquinone
always appeared in the same region; but sometimes noticeable
distance may not be observed at very low concentration. In
practical application, it might be a challenging task to separate
and identify them (1-octanol and 1,4-benzoquinone) from each
other with this statistical tool at concentration below one part
per million. So, further efficient analysis was needed to separate
and identify the target volatiles. To achieve this goal LDA was
carried out, because it is a useful method to find a linear

combination of features which characterizes or separates two or
more classes of objects or events. Using PCA, 1-octanol and
1,4-benzoquinone form clusters very close to each other, but
using LDA we can completely separate and identify them. In
Figure 11, LDA is used to identify unknown volatiles from a
group of volatiles. Three different sets of data from 1-octanol,
anisole, and 1,4-benzoquinone were used here to separate and
identify them from each other. Figure 11a shows that three
different clusters are formed in different regions; and none of
them jo-2011-023685overlapped or were close to each other.
Figure 11b shows that two clusters overlapped with each other,
where one cluster is for known 1-octanol and another
represents unknown 1-octanol, while anisole forms a cluster
far apart from the 1-octanol cluster. These data clearly indicate
that 1-octanol can be separated and identified from anisole.
Figure 11c shows that the clusters from known and unknown

Table 7. Slope/Sensitivity of Sensor to Various Gaseous Analytes (atm−1)

sensor Mea Ac THF Ani Pro To Oc

3 0.0981 0.2364 0.2771 0.0836 0.0564 0.0772 0.0382
5 0.1550 0.2251 0.2058 0.0964 0.0630 0.0478 0.0594
7 0.1520 0.6663 0.6983 0.2242 0.1099 0.2087 0.0546
11 0.1107 0.4192 0.5441 0.1716 0.094 0.1617 0.0656
13 0.6294 1.6201 4.9836 0.2664 0.1696 0.2540 0.0597
14 0.2064 0.8000 0.7932 0.2316 0.1593 0.2216 0.0723
15 0.1755 0.6577 0.5699 0.0778 0.0671 0.0483 0.0482

aTo, toluene; Ani, anisole; Me, methanol; Pro, 2-propanol; Oc, 1-octanol; Ac, acetone; and THF, tetrahydrofuran.

Table 8. Systems Constants for Sensor (s)

sensor c r s a b l

3 −37.5224 31.6794 18.2449 4.5511 33.8616 0.5094
5 −43.1466 35.4743 21.7236 7.6798 38.1557 0.6459
7 −29.3444 25.2999 14.8804 1.6734 27.3789 0.3012
11 −29.5175 25.0424 14.1696 1.8864 27.4249 0.4323
13 −91.4165 83.4684 44.1773 12.917 88.1347 1.3746
14 −25.8551 22.2209 13.1183 1.3005 24.5864 0.2195
15 −57.7764 48.2029 29.8219 8.5648 53.2104 0.8479

Figure 8. Linear discriminate analysis between 1-octanol and 1,4-
benzoquinone: (a) ability to discriminate by fourteen different sensors;
(b) absolute discriminate value against all sensors.

Figure 9. Distribution of model volatiles within principal component
space according to sensor array selected by (a) ev1 and (b) ev2.
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1-octanol overlap with each other, while 1,4-benzoquinone forms a
cluster in a different region. Although in PCA, 1-octanol and
1,4-benzoquinone form clusters very close to each other, in
LDA we can completely separate and identify them. The
separation and identification process is further advanced using
LDA, where the concentration of both volatiles is gradually
increased from 1 to 10% of vapor pressure and sufficient time is
needed to reach their equilibrium states. Figure 12 shows that,
with increasing the concentration of volatiles, 1,4-benzoqui-
none and 1-octanol move to positive and negative directions,
respectively. In the case of 1-octanol the ΔR/R value constantly
increased in the negative direction, while 1,4-benzoquinone
moved in the positive direction up to 7% of its vapor pressure
and then gradually declined. While generating continuous
vapor, a high flow rate of nitrogen disturbs the solid−gas phase
equilibrium of 1,4-benzoquinone. However, in real grain bin
application, it may not happen because insect pheromones and
fungal derived volatiles will always be in equilibrium with
headspace gas at very low air flow. So, LDA can be used as an
appropriate tool to separate and identify incipient grain
spoilage along with PCA.
Validation of Sensor Selection. A couple of sensor arrays

were made using the best seven sensing polymers in terms of
reproducibility, sensitivity and selectivity. Then the array was
exposed to those volatiles of interest and PCA was done using
old eigenvectors. Those sensor arrays efficiently distinguished
the analytes of interest along with other volatiles when they
were exposed individually in the sensor arrays (Figure 13). The
new exposures of volatiles to new sensor arrays fell within the
same principal component space of previously determined
using old sensor array.
Slight variation occurred for the distribution of benzoqui-

none response in the principal component space due to its
inherent property of sublimation. Another possibility could be
the inconsistency of saturated vapor pressure during gas

delivery at the flow rate (20 sccm) for 5 to 10 min. Similar
uncertainty was also observed while detecting quinone
derivatives (MBQ and EBQ) from red flour beetle secretions
on wheat using gas chromatography−mass spectrometry
method.26

Variation of Sensor Response within the PCB and
among PCB. To check the variation of sensor response within
the PCB and among PCB, t test was performed for equal
variance. It was tested with two analytes, 1-octanol and
methanol, and the obtained t test values were 0.4151 and
0.0141 for 1-octanol and methanol, respectively with equal
variance (from t test table,30,31 the tcrit = 2.179 at p = 0.025 and
df = 12). In both cases, t test(obs) < tcrit, which implies that
both sets were from the same population (Figure 14).
The sensor array potentially classifies stored-grain model

volatiles. This study illustrates the application of a carbon black
polymer sensor array for the detection of stored grain model
volatiles (insect pheromones and fungal odor) in the headspace
with a one step process. The developed sensor array may help
farmers in taking early preventive measures to save their

Figure 10. PCA using (a) the seven best sensors in terms of
reproducibility and (b) the seven best sensors after eliminating faulty
or poor one: poly(ethylene oxide).

Figure 11. Linear discrimination analyses of selective volatiles obtain
from sensor array. Data obtained from multiple exposures of 1-octanol
(▲), 1,4-benzoquinone (■), and anisole (●), in 10% of concentration
on sensor arrays. The LDA can separate and identify the solvents of
interest from each: (a) 1,4-benzoquinone (■) and anisole (●) are
known volatiles, and 1-octanol (×) is unknown; (b) anisole (●) and
1-octanol (▲) are known volatiles, and 1-octanol (×) is unknown; (c)
1,4-benzoquinone (■) and 1-octanol (▲) are known volatiles, and
1-octanol (×) is unknown.
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agricultural commodities like wheat, barley, rice, and other
cereals from insects and fungi. Our future work is to verify the
performance of the sensor array for detection of insect and
fungal infestation of wheat in storage bins.
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